Fonds National de la Recherche Luxembourg

Centre de Recherche Public Gabriel Lippmann

natur&ëmwelt

Tanja Eybe Frankie Thielen, Torsten Bohn, Bernd Sures zesumme fir d'natur **INFLUENCE OF THE EXCYSTMENT TIME ON THE BREEDING SUCCESS OF JUVENILE FRESHWATER PEARL MUSSELS** (MARGARITIFERA

Methods experiment 1:

-Infection: August 2010, 250 brown trout, 1000 glochidia/fish.

-brown trout stayed in a pond over the winter.

Preterm excystment period (January):

-70 brown trout were caught randomly and set in a "juvenile mussel collection station".

-Water heated from 2.3 up to 17 degree within 10 days.

-First drop-off : After 18 days at 17 degrees, January (21th).

-Fish were not fed

Juvenile mussel collection station

Natural excystement period (May):

-70 fish were caugth randomly and set in a "juvenile mussel collection station".

-First drop-off: in May (16th), without artificial heating.

-Fish were not fed.

Juvenile mussels after drop-off

-Collection every 2-3 days.

-Mussels of one collection day were set in one 500 ml-plastic box with river water

-with a maximum of 100 individuals per plastic box (to avoid food competition).

-Food: Detritus and algae (Eybe et al., 2013).

-Every box was observed for 110 days.

Detritus and algae: Shellfishdiet and Nanno

<u>Results:</u> Preterm excystment period (January):

Number of juvenile mussels collected on each day

-Duration: 39 days. -Peak on day 24 -Total number of 2854 juvenile mussels

Body-length of juvenile mussels on different collection days

-The first juvenile mussels: average length of 0.32 mm

-Tallest mussels: average length of 0.38 mm

-Significant correlation between the drop-off day and the length of dropping mussels

Body-length of mussels at the age of 110 days

- -Smallest mussels: 0.86 mm (first day) and 0.92 mm (last day)
- -All others ≥1 mm
- -Tallest mussels: 1.48 mm

-Although host fish were not fed and their condition factors sank significantly, the growth rates of "later" mussels were good.

Number of mussels surviving after 110 days

-Bad survival rate for the "early" mussels

-Day 7 and later: 62-98 % survival

-the "length of mussels after excystment" had a significant effect on the survival rate -Although host fish were not fed, the survival rates of "later" mussels were good.

Natural excystment period (May):

Number of juvenile mussels collected on each day

-Around 50% shorter (19 instead of 39 days) -Total number of 2310 juvenile mussels (2854 in January)

Body-length of juvenile mussels on each day

-First mussels: Average length of 0.33 mm -Tallest mussels: 0.38 mm (day 16 and 18) -Length of dropping mussels increased too

Body-length of the mussels at the age of 110 days

- -No survival for mussels from day 0
- -Smallest mussels: 1.0 mm (day 2)
- -All other mussels ≥1 mm
- -Tallest mussels: 1.45 mm (1.48 in January)

Number of mussels surviving after 110 days

-The "early" mussels had a bad survival too

- -Best survival rate: 38%
- -The mussels from January hat a significant better survival (up to 98 %)

zesumme fir d'natur

Why is the survival rate in January better? Possible reasons:

-Mussels drop-off before pesticides and liquid manure are used in the catchment area.

Different water parameters, measured weekly during breeding time:

Water parameter	Preterm excystment period (January)				Natural excystment period (May)			
	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
рН	7.3	0.2	6.7	7.6	7.7	0.2	7.3	8.0
Conductivity	158.7	10.3	148.0	181.0	186.5	10.1	163.9	207.0
in μS cm ⁻¹								
PO ₄ ³⁻ in mg L ⁻¹	0.11	0.05	0.09	0.29	0.21	0.04	0.14	0.29
NO ₂ ⁻ in mg L ⁻¹	0.04	0.02	0.03	0.12	0.04	0.02	0.03	0.12
NH ₄ ⁺ in mg L ⁻¹	0.05	0.03	0.04	0.16	0.05	0.01	0.04	0.09
NO ₃ ⁻ in mg L ⁻¹	19.20	5.71	7.50	26.10	5.96	2.55	2.40	11.30

<u>Methods experiment 2</u>: Developement of the infestation rate from FPM glochidia on two different strains of brown trout

-Brown trout strains: "Wilwerrath" from the German Eifel J and "Lintgen" from rivers in Northern Luxembourg J

-Infection:

200 fish of both strains, under the same conditions, 1000 glochidia/fish

-Determination of: **mean abundance** and **prevalence** of glochidia, every month (August – May)

-First examination 3 days after infection (n=5)

Results:

Mean abundance from FPM glochidia on two different strains of brown trout during nine month.

 \rightarrow Obvious lost of glochidia in both strains.

Mean abundance: mean number of glochidia on all host fish Prevalence: Percentage of infected host fish -No significant difference in both strains

-The loss of glochidia was lower in January.

-Prevalence until October: 100 % in both strains.

January: 80-100% in both strains.

May: 20-40% in both stains.

Conclusion:

-The "early" mussels in both excystment periods had a bad survival chance and their growth was lower \rightarrow less time intensive systems.

-The feeding stop of the fish showed no negative influence on the mussels.

-A preterm excystment period in January seems not to harm the mussels as they had a better survival and a similar growth rate.

Advantages of a preterm excystment period:

-More juvenile mussels can be collected for artificial rearing as the loss on the host fish is lower until January.

-It can be advantageous when the river water conditions become worse in spring (e.g. pesticides and liquid manure) \rightarrow higher survival chance.

-Mussels have a longer growth period untill the next winter \rightarrow higher survival chance.

Thank you, Merci, Danke, Kiitos, Takk, Tack, Obrigada, Gracias,...

Eybe T, Thielen F, Bohn T, S 2013. The first millimetre – rearing of juvenile freshwater pearl mussels (*Margaritifera margaritifera*) in plastic boxes. *Aquatic Conservation: Marine and Freshwater Ecosystems* **23**:964-975.

Eybe T, Thielen F, Bohn T, Sures B. 2014. Influence of the excystment time on the breeding success of juvenile freshwater pearl mussels (*Margaritifera margaritifera*). Aquatic Conservation: Marine and Freshwater Ecosystems. Article in press.