

## Removal of bank protection to restore hydromorphology and salmonid habitat for freshwater pearl mussel conservation



Kenneth MacDougall EnviroCentre Ltd.

kmacdougall@envirocentre.co.uk

Hannah Barker (EnviroCentre), Stephen Addy & Susan Cooksley (The James Hutton Institute)





#### **Restoration Project Overview**

- 'Pearls in Peril' securing the future of the freshwater pearl mussel in Great Britain
- LIFE + NATURE project 2012-2016
- Co-funded by 14 organisations (Scotland, England & Wales)



 Prioritise restoration of sites on the basis of benefits to freshwater pearl mussels and restoration of natural processes



pearls in









### **River South Esk**

- Special Area of Conservation (SAC)
- Internationally important populations of freshwater pearl mussel and Atlantic salmon
- Catchment area of 564 km<sup>2</sup>, mean flow 13m<sup>3</sup>/s
- Study areas:
  - Upland gravel bed river
  - 250-280 m above sea level
  - catchment areas 20-56 km<sup>2</sup>
  - mean flows 1.1-2.3 m<sup>3</sup>/s
  - median annual maximum flood 14-39 m³/s



Copyright  $\ensuremath{\mathbb{C}}$  Map of Scotland - Single Colour by FreeVectorMaps.com





pearls in 🔨 peril

## **Project Aims**

Prioritise restoration of sites on the basis of benefits to freshwater pearl mussels and restoration of natural processes through:

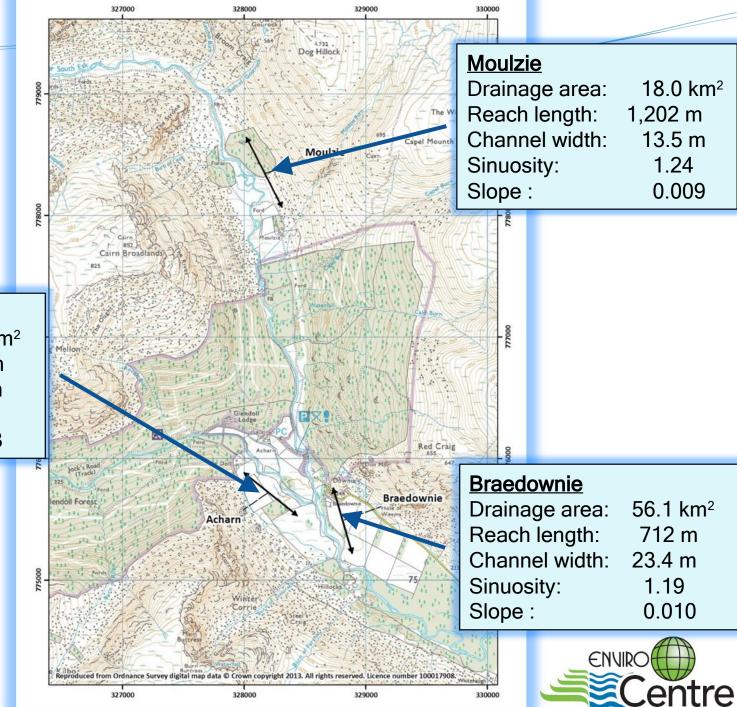


- i. Assessment of baseline hydromorphology (including impacts of bank protection) and habitat.
- ii. Identification of restoration measures and prediction of impacts (channel, habitat and flood risk).
- iii. Prioritise, design and cost restoration measures.
- iv. Outline effective monitoring methods to evaluate success of restoration work.



pearls in > peril






## Study Reaches

AcharnDrainage area:25.7 km²Reach length:809 mChannel width:13.8 mSinuosity:1.23Slope :0.013

The James **Hutton** 

Institute



# Establishing baseline conditions

- Bank protection
- Perceived impacts of bank protection
- Conditions historically more dynamic and complex
- Field surveys
- Hydrological assessment
- ID hydraulic models
- Hydromorphological assessment







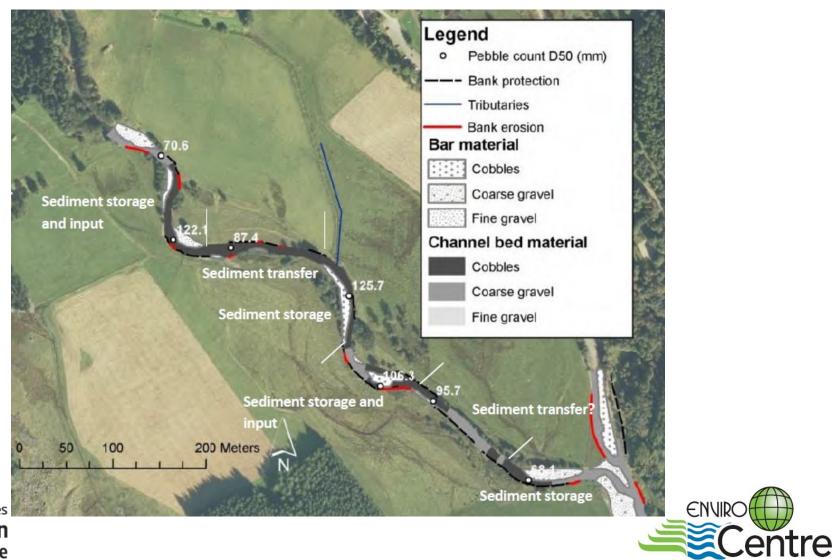


pearls in 🔨 peril

#### Hydromorphology

- Wide alluvial valley, single thread
- Historically more dynamic processes with more channel branches
- Active bank erosion processes are still occurring despite bank protection

|                                                  | Moulzie | Acharn | Braedownie |
|--------------------------------------------------|---------|--------|------------|
| Reach length (m)                                 | 1,202   | 809    | 712        |
| Drainage area (km²)                              | 18.0    | 25.7   | 56.1       |
| Total length of bank protection (m)              | 738     | 487    | 190        |
| Bank erosion length (m)                          | 458     | 112    | 206        |
| Max bank erosion length (m)                      | 82      | 34     | 112        |
| Stream power ω (W/m <sup>2</sup> )               | 97      | 295    | 177        |
| Boundary shear stress $\tau$ (N/m <sup>2</sup> ) | 34      | 69     | 43         |
| Sheilds parameter $\tau^*$ (-)                   | 0.027   | 0.047  | 0.032      |




pearls in





#### **Geomorphic Mapping**





## Predicted hydromorphological effects

|   | Short term (<1 year)                                                                                                                                                                                       | Longer term (1-10 years) |                                                                                                                                                                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Bank erosion and input of destabilised<br>sediment<br>Bank erosion may be limited due to<br>riparian vegetation and straight planform<br>Geomorphic predictions suggest slight<br>increase in bed mobility | •                        | Meander migration and extension<br>Further aggradation<br>Channel widening<br>Decrease in bed sediment size due to channel<br>widening and greater local sediment input<br>Future responses may be limited due to natural<br>structure erosion and adjustment already<br>occurred |



pearls in



## Predicted benefits to local habitats

- Increased diversity of morphology in:
  - existing channel
  - reconnection with palaeochannels
- Finer riffle substrate more suitable for spawning salmonids
- Bank undercutting and block input providing cover for fish
- Increased input of sediment for sustaining freshwater pearl mussel habitats downstream







pearls in 🔨 peril

#### **Restoration Strategy**

- Remove and restore bankside rock armouring
- Enhancement: bank reprofiling and reconnection of paleochannels
- Promote more natural distribution of sediments benefiting local habitats (salmonids, freshwater pearl mussels and other biota)
- Multi-criteria analysis to prioritise sites:
  - greatest impact on natural processes
  - potential benefit for habitat improvement
  - risk posed to receptors (farmland and infrastructure).
- Following discussion with local stakeholders, four zones selected for design, which focus on seven of the prioritised sites



pearls in > peril



#### **Outcomes and Next Steps...**

- Bank protection structures are a common but impacts are rarely documented
- Case studies of removal in high energy gravel bed rivers are rare.
- Assessment provides a quantified analysis and demonstrates a simple, relatively low cost approach to predicting the effects of restoration actions and prioritising sites.
- Restoration works are scheduled to commence in May 2015.
- Robust monitoring to inform future restoration works.





pearls in > peril



## Thank you

pearls in



Kenneth MacDougall & Hannah Barker (EnviroCentre), Stephen Addy & Susan Cooksley (The James Hutton Institute) kmacdougall@envirocentre.co.uk



